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General optimization problem

Consider the problem

f? = inf
x∈Rn

f(x)

s. t. x ∈ Ω

where Ω := {x : gj(x) ≥ 0, j = 1, . . . ,m} ⊆ Rn for some functions f : Rn → R and
gj : Rn → R, j = 1. . . . ,m. This can be rewritten in two ways:

(1) f? = inf
µ∈M+

∫
Ω

f(x)µ(x) dx

s. t.

∫
Ω

µ(x) dx = 1

Interpretation: µ? is the probability measure

supported on Ω over which the expectation of

f(x) is minimized.

(2) f? = sup
λ∈R

λ

s. t. f(x)− λ ≥ 0, ∀x ∈ Ω

Interpretation: λ? is the largest number that

can be subtracted from f(x) such that the re-

sult stays positive on Ω.

In fact these two are duals of each other (they are infinite-dimensional linear programs),
and strong duality often holds. The only problem is that (1) has infinitely many decision
variables and (2) has infinitely many constraints...
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Polynomial optimization problem

What if f , g1, . . . , gm are polynomial?

f? = inf
x∈Rn

f(x)

s. t. x ∈ Ω

Then tools are available to make the problem finite-dimensional. Define the notation

R[x] as the ring1 of polynomials on x = [x1, . . . , xn]>.

xα for x ∈ Rn and vector α ∈ Nn means xα1
1 xα2

2 · · ·xαn
n , i.e., shorthand notation for

a monomial.

Example

For example if n = 2 and α =

[
2
1

]
, then xα = x2

1x2.

fα is the coefficient that multiplies the monomial xα

⇒ we can write f(x) =
∑
α∈Nn

fαx
α

1The “ring” part just means polynomials come with operators for commutative addition, multiplication, and
scalar multiplication.
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Bounded-degree polynomial

For a polynomial whose maximum total degree amongst all monomials is d, define the
following:

R[x]d as the ring of polynomials of degree at most d.

Nnd as the set of integer vectors summing to no more than d:

Nnd :=

{
α ∈ Nn :

∑
i

αi ≤ d

}

Example: n = 2, d = 2

We have N2
2 =

{[
0
0

]
,

[
1
0

]
,

[
0
1

]
,

[
2
0

]
,

[
1
1

]
,

[
0
2

]}
so the different possible values of

xα for α ∈ N2
2 are the monomials 1, x1, x2, x2

1, x1x2, and x2
2.

There are |Nnd | = s(d) :=
(
n+d
n

)
monomials in an n-dimensional, degree-d polynomial

f ∈ R[x]d. So f is described by s(d) scalar coefficients fα:

f(x) =
∑
α∈Nn

d

fαx
α
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Expectation of a polynomial function

The α-moment of a measure µ is defined by yα :=
∫
xαµ(x) dx. The expectation of a

polynomial f(x) with respect to a measure µ with moments {yα}α∈Nn is therefore∫
f(x)µ(x) dx =

∫ ∑
α∈Nn

fαx
αµ(x) dx

=
∑
α∈Nn

(fα

∫
xαµ(x) dx︸ ︷︷ ︸

Definition of α-moment of µ

) =
∑
α∈Nn

fαyα

The expectation depends on the same moments as the monomials present in f .

Riesz Functional

For any sequence of moments {yα}, the Riesz Functional Ly : R[x]→ R is defined as

Ly(f) =
∑
α∈Nn

fαyα
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Moment matrix Md(y)

The moment matrix Md(y) is an s(d)× s(d) real, symmetric matrix with rows and
columns indexed by Nnd . Its (α, β) entry is equal to yα+β .

Thus, populating Md(y) requires a y containing moments up to degree 2d.
It has the following useful property:

Theorem

“Pseudo-moment vector y has a representing measure µ” ⇒Md(y) � 0

Proof.

If y has a representing measure µ then
∫
f(x)2µ(x)dx ≥ 0 for any polynomial f ∈ R[x]d,

as neither f2 nor µ are negative anywhere. It can be shown that∫
f(x)2µ(x) dx ≥ 0 ∀f ∈ R[x]d ⇔

∑
α∈Nn

d

∑
β∈Nn

d

fαfβyα+β ≥ 0 ∀f ∈ R[x]d .

The right-hand side is equivalent to f>Md(y)f ≥ 0 for all f ∈ Rs(d), which is the
definition of Md(y) � 0.
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Localizing matrix Md(gy)

Given a polynomial g(x) =
∑
γ gγx

γ , the localizing matrix Md(gy) is an s(d)× s(d)
real, symmetric matrix with rows and columns indexed by Nnd . Its (α, β) entry is equal to∑
γ gγyα+β+γ . Populating Md(gy) requires a y containing moments up to degree

2d+ deg(g).2 It has the following useful property:

Theorem

“Pseudo-moment vector y has a representing measure µ whose support is contained in
the set {x : g(x) ≥ 0}” ⇒Md(gy) � 0

Proof.

If y has a representing measure µ supported on {x : g(x) ≥ 0}, then∫
f(x)2g(x)µ(x)dx ≥ 0 for any polynomial f ∈ R[x]d, as neither f2, nor g, nor µ are

negative. It can be shown that∫
f(x)2g(x)µ(x) dx ≥ 0 ∀f ∈ R[x]d ⇔

∑
α,β,γ

fαfβgγyα+β+γ ≥ 0 ∀f ∈ R[x]d .

The right-hand side is equivalent to f>Md(gy)f ≥ 0 ∀f ∈ Rs(d), i.e. Md(gy) � 0.

The moment matrix is just a special case of the localizing matrix, with g(x) ≡ 1.
2The common convention is to use Md−ddeg(g)/2e(gy) instead, to limit moments of y to degree 2d.
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Moment relaxation of problem (1)
We rewrote f? = infx∈Rn f(x) s. t.x ∈ Ω as

(1) f? = inf
µ∈M+

∫
Ω

f(x)µ(x) dx s. t.

∫
Ω

µ(x) dx = 1

The level-d moment relaxation of (1)

(Pd) ρd = inf
y
Ly(f)

s. t. y0 = 1, (A)

Md(y) � 0, (B)

Md−dj (gjy) � 0, j = 1, . . . ,m (C)

where y = {yα}α∈Nn
2d

, dj := ddeg(gj)/2e, and d ≥ max{deg(f),deg(g1), . . . , deg(gm)}.
(A) is necessary for y to correspond to a probability measure, i.e., integrating to 1.

(B) is necessary for the vector of pseudo-moments y to have a representing measure µ.
That is, that there can exist a measure µ whose moments are {yα}.

(C) lists the so-called localizing constraints that are necessary for µ to be supported on
Ω. Constraints (A) to (C) are necessary but not sufficient for

∫
Ω
µ(x) dx = 1.

⇒ Problem (Pd) is a tractable SDP relaxation of (1).
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Sum-of-squares polynomials

When is a polynomial f ∈ R[x]d non-negative on all of Rn?

Clearly it is sufficient if one can write it as a sum of squared polynomials:

f(x) =
∑
i

fi(x)2 =⇒ f(x) ≥ 0 ∀x ∈ Rn

Sum-of-squares polynomial

The condition f(x) =
∑
i fi(x)2 is equivalent to

∃F ∈ Rs(d)×s(d) s. t. F � 0 and f = x>Fx (SOS)

where x is an s(d)-dimensional vector containing the monomials xα for all α ∈ Nnd . All
the coefficient data appears in the matrix F. We use Σ[x]d to denote the set of all
degree-d polynomials satisfying (SOS).
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Sum-of-squares polynomials

But this condition is in general not necessary, i.e., f(x) ∈ Σ[x]d : f(x) ≥ 0 ∀x ∈ Rn.

Example (Motzkin 1967)

The polynomial in n = 2, d = 6, f(x) = x4
1x

2
2 + x2

1x
4
2 − 3x2

1x
2
2 + 1, is non-negative on all

of R2 but has no SOS representation.
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Sum-of-squares polynomials

Although f(x) ∈ Σ[x]d : f(x) ≥ 0 ∀x ∈ Rn in general, the reverse implication does
turn out to hold in the following special cases:3

The only cases where non-negativity also implies SOS

n = 1, d ≥ 0: univariate polynomials of any degree;

n ≥ 1, d = 2: quadratic polynomials of any dimension;

n = 2, d = 4: quartic polynomials in 2 dimensions

Obviously, Motzkin’s polynomial does not fall into any of these categories.

3J.-B. Lasserre, “An Introduction to Polynomial and Semi-Algebraic Optimization”, Chapter 2, Cambridge
University Press, 2015
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Quadratic module

For the dual problem (2), we have to check the condition f(x)− λ ≥ 0, ∀x ∈ Ω. Each
point in Ω defines a constraint =⇒ intractable!

We instead try to find a polynomial that can be certified as non-negative on Ω.4

Quadratic module

For g := (g1, g2, . . . , gm), the quadratic module is defined as

Q(g) :=

{
σ0 +

m∑
i=1

σjgj

∣∣∣∣∣ σj ∈ Σ[x], j = 0, . . . ,m

}
.

Truncated quadratic module

The truncated quadratic module is defined, for polynomial degree k, as

Qk(g) :=

{
σ0 +

m∑
i=1

σjgj

∣∣∣∣∣ σ0 ∈ Σ[x]k, σj ∈ Σ[x]k−dj , j = 1, . . . ,m

}
,

where dj := ddeg(gj)/2e.

4Note that non-negativity on Ω is much less restrictive than non-negativity on Rn, so simply enforcing
f(x)− λ ∈ Σ[x] is generally way too conservative.
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Putinar’s Positivstellensatz

We require one more technicality, namely an algebraic guarantee that set Ω is compact:

Definition (Lasserre 2018, Def. 1)

Archimedean condition: The quadratic module Q(g) associated with Ω is said to be
Archimedean if there exists M > 0 such that the quadratic polynomial M −‖x‖2 satisfies

M − ‖x‖2 ∈ Qk(g)

for some k.

Then the following result holds:

Theorem (Putinar 1993)

For Ω = {x | gj(x) ≥ 0, j = 1, . . . ,m} ⊂ Rn with associated Archimedean quadratic
module Q(g):

(a) If a polynomial f ∈ R[x] is strictly positive on Ω then f ∈ Q(g).

(b) The pseudo-moments {yα}α∈Nn have a representing measure on Ω if and only if
Md(y) � 0 and Md(gjy) � 0 for j = 1, . . . ,m, and for all d ∈ N.
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Sum-of-squares restriction of problem (2)
We rewrote f? = infx∈Rn f(x) s. t.x ∈ Ω as

(2) f? = sup
λ∈R

λ s. t. f(x)− λ ≥ 0, ∀x ∈ Ω

The level-d SOS restriction of problem (2)

(Dd) δd = sup
λ∈R,σ0,σ1,...,σm

λ

s. t. f − λ = σ0 +
m∑
j=1

σjgj , (D)

σ0 ∈ Σ[x]d (E)

σj ∈ Σ[x]d−dj j = 1, . . . ,m (F)

where dj = ddeg(gj)/2e.
(D) is enforced as s(2d) scalar constraints equating monomial coefficients on either side.

The variable λ contributes to the “1” monomial for this purpose.

(E) and (F) ensure each multiplier polynomial is SOS; implemented as LMIs.

⇒ Problem (Dd) is a tractable SDP restriction of (2).
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Properties of problems (Pd) and (Dd)

Both problems are LMIs and are therefore convex and in principle tractable e.g. with
MOSEK, Sedumi, etc.

They form a primal-dual pair for given d.

From weak duality we know δd ≤ ρd, and we also know ρd ≤ f?.

Theorem (Lasserre 2000)

Let Ω be compact and the associated Q(g) Archimedean. Then the following hold:

(i) As d→∞, ρd ↗ f? and δd ↗ f?.

(ii) If, for some d, the primal-optimal solution yd satisfies

rank(Md(y
d)) = rank(Md−s(y

d)),

where s = maxj dj = maxjddeg(gj)/2e, then ρd = f?. If t is the rank obtained in
the above, there are t global minimizers x?1, . . . , x

?
t ∈ Ω.

The global solutions x?1, . . . , x
?
t can be extracted from yd using a linear algebra routine.
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Properties of problems (Pd) and (Dd)

Lasserre’s theorem does not guarantee that the rank condition is ever satisfied for
any finite d. But in practice, convergence at a “small” value of d is typical.

Theorem (Nie 2014)

Assume Ω is compact, the associated Q(g) Archimedean, and that for each global
solution x? the following technical conditions hold:

(i) The gradients ∇g1(x?), . . . ,∇gm(x?) are linearly independent;

(ii) Strict complementarity holds: gj(x
?) = 0 =⇒ λ?j > 0;

(iii) Hessian of the Lagrangian is strictly positive definite:

u>
[
∇2
x

(
f(x?)−

m∑
j=1

λ?jgj(x
?)

)]
u > 0

for all 0 6= u ∈ ∇(f(x?)−
∑m
j=1 λ

?
jgj(x

?))⊥.

Then f − f? ∈ Q(g), i.e., there exists a hierarchy level d? ∈ N, and associated SOS
polynomials σ?0 ∈ Σ[x]d? , σ?1 ∈ Σ[x]d?−d1 , . . ., σ?m ∈ Σ[x]d?−dm such that

f(x)− f? = σ?0(x) +

m∑
j=1

σ?j (x)gj(x) ∀x ∈ Rn.
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Further properties of the Moment-SOS hierarchy

Nie’s conditions can be seen as analogous to the KKT conditions from convex
optimization, but extend to non-convex polynomial problems.

I The SOS polynomials σj(x) play the role of the usual Lagrange multipliers λj for the
constraints −gj(x) ≤ 0.

I Non-trivial σj indicates constraint j makes a difference to the value of f?, even if not
active at x?! This cannot happen in convex optimization with conventional scalar
multipliers λj .

Polynomial problems of degree d can be described5 by a point in R(m+1)s(d).
Problems satisfying Nie’s conditions are dense in this space.

For SOS-convex problems6, the Moment-SOS hierarchy attains f? at the first legal
value of d.

I Attractive, because otherwise the method would be disadvantageous for “easy”
problems.

I If convex but not SOS-convex, then convergence is still finite – as long as ∇2f(x?) � 0
for every global minimizer x? – but not guaranteed to occur at the first legal d.

5This is because each function f, g1, . . . , gm is fully described by s(d) monomial coefficients.
6In an SOS-convex problem, the functions f , −g1, . . . ,−gm are SOS-convex polynomials, meaning

∇2f(x) = L(x)L(x)> for some L ∈ R[x]n×p.
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Notes and references

Toolboxes

YALMIP functionality for SOS and Moment Relaxations:
https://yalmip.github.io/tutorial/sumofsquaresprogramming/

https://yalmip.github.io/tutorial/momentrelaxations/

Gloptipoly: http://www.laas.fr/~henrion/software/gloptipoly
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https://arxiv.org/abs/1808.03446. This lecture covered Sections 1 and 2.

J.-B. Lasserre, “An Introduction to Polynomial and Semi-Algebraic Optimization,”
Cambridge University Press, 2015

M. Putinar, “Positive polynomials on compact semi-algebraic sets,” Indiana
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J. Nie, “Optimality Conditions and Finite Convergence of Lasserre’s Hierarchy,”
Math. Program. Ser. A, vol. 146, 2014.

2019-7-17 1.18

https://yalmip.github.io/tutorial/sumofsquaresprogramming/
https://yalmip.github.io/tutorial/momentrelaxations/
http://www.laas.fr/~henrion/software/gloptipoly
https://arxiv.org/abs/1808.03446

	Moment-SOS Hierarchy: Introduction
	Notes and references


