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Motivation

Nonlinear control systems are generally hard to analyse

Control synthesis is even harder

Does the moment-SOS hierarchy help for polynomial systems?

Lyapunov function for system ẋ = f(x):

V (x) > 0 for x 6= 0,

V (0) = 0,

(
∂V

∂x

)>
f(x) < 0, for all x ∈ Rn\{0}.

Central idea: Replace the above with SOS conditions.
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Polynomial dynamical system

ẋ = fx(x, u)

with constraints ai1(x, u) ≤ 0, i1 = 1, . . . , N1,

bi2(x, u) = 0, i2 = 1, . . . , N2,∫ T

0

ci3(x, u) dt ≤ 0, i3 = 1, . . . , N3, ∀T ≥ 0,

where

x ∈ Rn is the state vector,

u ∈ Rm is an auxiliary vector containing any of:
I control inputs,
I non-polynomial functions of states,
I uncertain parameters,

all functions ai1 , bi2 , ci3 are polynomial in (x, u),

the function fx(x, u) is either
I a vector of polynomial functions,
I a vector of ratio-of-polynomial functions n(x,u)

d(x,u)
with no singularity on

D := {(x, u) ∈ Rn+m | ai1 (x, u) ≤ 0, bi2 (x, u) = 0, ∀i1, i2}
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Lyapunov analysis
Assume that (x, u) have been defined such that fx(0, u) = 0 for x = 0 and
u ∈ D0

u := {u | (0, u) ∈ D}. Then the following result holds.

Theorem (PP2002, Theorem 1)

Suppose that for the above system there exist polynomial functions V (x), w(x, u),
pi1(x, u), qi2(x, u), and constants ri3 ≥ 0, such that V (x) is positive definite, and such
that w(x, u) > 0 and pi1(x, u) ≥ 0 in D.

If either of the following two conditions hold:

(i)

−∂V
∂x
·fx(x, u)+

N1∑
i1=1

pi1(x, u)ai1(x, u)+

N2∑
i2=1

qi2(x, u)bi2(x, u)+

N3∑
i3=1

ri3ci3(x, u) ≥ 0

(ii)

−w(x, u)
∂V

∂x
· fx(x, u) +

N1∑
i1=1

pi1(x, u)ai1(x, u) +

N2∑
i2=1

qi2(x, u)bi2(x, u) ≥ 0

then x = 0 is a stable equilibrium of the system.
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Lyapunov analysis

Proof.

Integrating both inequalities from t = 0 to t = T yields

(i)

V (0)− V (T ) ≥
∫ T

0

(
N1∑

i1=1

pi1(x, u)ai1(x, u) +

N3∑
i3=1

ri3ci3(x, u)

)
dt ≥ 0.

(ii)

w(x, u)(V (0)− V (T )) ≥ −
N1∑

i1=1

∫ T

0

pi1(x, u)ai1(x, u) dt ≥ 0.

which implies

V (0)− V (T ) ≥ −
N1∑

i1=1

∫ T

0

pi1(x, u)ai1(x, u)

w(x, u)
dt ≥ 0.

Thus, x = 0 is a stable equilibrium by the standard Lyapunov argument.

Additional technicalities apply if fx(x, u) is a rational vector field [PP2002, Remark 2].
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Finding polynomials V (x), w(x, u), pi1(x, u), qi2(x, u), and constants ri3

ẋ = fx(x, u)

with constraints ai1(x, u) ≤ 0, i1 = 1, . . . , N1,

bi2(x, u) = 0, i2 = 1, . . . , N2,∫ T

0

ci3(x, u) dt ≤ 0, i3 = 1, . . . , N3, ∀T ≥ 0,

The theorem above guarantees stability of the origin. But the certificate relies on
choosing a number of polynomials:

V (x) where V (0) = 0 and V (x) > 0 for x 6= 0;

w(x, u) > 0 for all (x, u) ∈ D;

pi1(x, u) ≥ 0 for all (x, u) ∈ D (associated with constraints ai1(x, u) ≤ 0);

qi2(x, u) of indefinite sign (associated with constraints bi2(x, u) = 0);

ri3 ≥ 0 (associated with constraints
∫ T

0
ci1(x, u) dt ≤ 0);

2019-7-17 2.6



Sum-of-Squares Lyapunov function

These polynomials can be found via a SOS program:

SOS Lyapunov function

min
V,W,{pi1},{qi2},{ri3}

0

s. t. V −W ∈ Σ[x],

W ∈ F ,
Left-hand side of condition (i) or (ii) ∈ Σ[x],

pi1 ∈ Σ[x], i1 = 1, . . . , N1,

ri3 ≥ 0, i3 = 1, . . . , N3.

Set F is a pre-chosen positive definite form for the polynomial W (x).1

The SOS program is solved for a particular level d of the SOS hierarchy.

A solution for given d is sufficient to certify stability of the origin.

If there is no solution, this does not imply the system is not stable.

Can increase d to expand class of Lyapunov functions sought.

1 For example W (x) =
∑n

k=1 εkx
2
k with εk ≥ 0.1 for all k.
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Example: Polynomial dynamics in R6

ẋ1 = −x31 + 4x32 − 6x3x4

ẋ2 = −x1 − x2 + x35

ẋ3 = x1x4 − x3 + x4x6

ẋ4 = x1x3 + x3x6 − x34
ẋ5 = −2x32 − x5 + x6

ẋ6 = −3x3x4 − x35 − x6

This system has an equilibrium at x = 0, and no u, nor any constraints ai1 , bi2 , ci3 .

Observations:

The SOS program is simply “find V,W such that V −W ∈ Σ[x], W ∈ F , and
− ∂V

∂x
fx(x) ∈ Σ[x].”

For level d = 1, i.e. quadratic V and W , with F chosen as in footnote 1, the SOS
program has no solution.

For level d = 2, i.e. quartic V and W , where W belongs to the class
F = {

∑6
k=1(ε1kx

2
k + ε2kx

4
k) | ε1k + ε2k ≥ 0.1 ∀k}, a Lyapunov function is found,

V (x) = 0.7257x21 + 1.3x42 + 2.325x23 + 1.575x24 + 0.65x45 + 1.3x26
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Auxiliary variables u
Auxiliary variables can be used to represent

control inputs,

non-polynomial functions of states,

uncertain parameters,

equilibrium locations.

Additional constraints coupling x and u can specify, for example, how an equilibrium
depends on another parameter.

For example, a chemical reaction between two species with concentrations u and v:

u̇ = a− u+ u2v

v̇ = b− u2v

where a > 0 and b > 0 are unknown concentrations of two other species affecting u and
v. Any equilibrium (ū, v̄) must satisfy

0 = a− ū+ ū2v̄ (s1)

0 = b− ū2v̄ (s2)

Then we can define (u1, u2, u3, u4) := (a, b, ū, v̄), (s1) and (s2) become equality
constraints of the form b1(x, u) = 0 and b2(x, u) = 0.
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Auxiliary variables u

Furthermore, uncertainty for parameters u1 = a and u2 = b can be encoded with
inequality constraints:

0 ≥ a− u1

0 ≥ b− u2

The state variables (x1, x2) are then redefined relative to the equilibrium
(u3, u4) = (ū, v̄):

ẋ1 = u1 − (x1 + u3) + (x1 + u3)2(x2 + u4)

ẋ2 = u2 − (x1 + u3)2(x2 + u4)
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Auxiliary variables u

Final system with constraints, where:

(x1, x2) = (u− u, v − v) and

(u1, u2, u3, u4) = (a, b, u, v)

ẋ1 = u1 − (x1 + u3) + (x1 + u3)2(x2 + u4)

ẋ2 = u2 − (x1 + u3)2(x2 + u4)

0 ≥ a− u1 =: a1(x, u)

0 ≥ b− u2 =: a2(x, u)

0 = u1 − u3 + u2
3u4 =: b1(x, u)

0 = u2 − u2
3u4 =: b2(x, u)

In addition, restrict search to a local equilibrium: |u− u| < γu and |v − v| < γv for
0 < γ ≤ 1. This leads to two more constraints a3(x, u) = x21 − γu2

3 ≤ 0 and
a4(x, u) = x22 − γu2

4 ≤ 0.

⇒ can then solve SOS program to certify stability for entire ranges of uncertain a and b.
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Non-polynomial dynamics

The auxiliary variables u can also be used to model non-polynomial dynamics, with
additional constraints. For example the “whirling pendulum” of [PP2002, Fig. 4]:

ẋ1 = x2,

ẋ2 = θ̇2a sinx1 cosx2 −
g

lp
sinx1.

With the substitution u1 = sinx1, u2 = cosx1 one obtains

ẋ1 = x2,

ẋ2 = θ̇2au1u2 −
g

lp
u1.

with the additional consistency constraint u2
1 + u2

2 = 1. This is called a “lifting” to higher
dimension, as more variables are introduced than are needed to model the system.

The advantage of the new polynomial representation is that the SOS framework can then
be used to find a Lyapunov function for the lifted problem.
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Control synthesis

So far, we have only looked at autonomous systems, essentially ẋ = fx(x). How do we
use this framework to design a controller for

Stability?

Closed-loop performance?

Scope

Nonlinear systems of the “state-dependent linear” form

ẋ = A(x)x +B(x)u,

where A(x) and B(x) are polynomial matrices in x. We seek a controller

u = F (x)x,

where x is a vector of monomials in x satisfying

x = 0⇔ x = 0.
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Lyapunov theorem for polynomial control synthesis
Let x̃ be the sub-vector of x corresponding to the rows of B(x) whose entries are all
zero, and let J be the set of indices for the zero rows in B(x).

Theorem (PPW2004, Theorem 6)

Suppose there exist appropriately-dimensioned polynomial matrix K(x) and symmetric
polynomial matrix P (x̃), a constant ε1 > 0, and a ε2(x) ∈ Σ[x], such that

v>(P (x̃)− ε1I)v ∈ Σ[x, v]

and − v>
(
P (x̃)A>(x)M>(x) +M(x)A(x)P (x̃)

+K>(x)B>(x)M>(x) +M(x)B(x)K(x)

−
∑
j∈J

∂P

∂xj
(x̃)Aj(x)x+ ε2(x)I

)
v ∈ Σ[x, v],

where Σ[x, v] is the set of polynomials of the form v>F (x)v that can be written
(v ⊗ x)>Q(v ⊗ x), for some symmetric Q � 0. Recall that x denotes the vector of
monomials in x. Matrix M(x) is defined by Mij(x) = ∂xi/∂xj .

Then u(x) = K(x)P−1(x̃)x is locally stabilizing.

If ε2(x) > 0 for x 6= 0 then the controller is asymptotically stabilizing.
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Kronecker product SOS condition
The theorem uses a sum-of-squares restriction of constraints of the form

v>F (x)v ≥ 0, ∀v ∈ Rn,

where F (x) is polynomial in x. The usual condition F (x) � 0 ∀x ∈ Rn is not
computationally efficient to work with. However there is a sufficient SOS representation

v>F (x)v = (v ⊗ x)>Q(v ⊗ x),

for some symmetric Q � 0. The symbol ⊗ denotes the Kronecker product. For v ∈ Rn

and x ∈ Rs(d), this is given by

v ⊗ x :=



v1 · 1
v1x1
...

v1x
d
n

...
vn · 1
vnx1
...

vnx
d
n
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Lyapunov theorem for polynomial control synthesis

A more restrictive formulation requires a constant P matrix, but guarantees global
stability.

Theorem (PPW2004, Theorem 6: Global stability version)

Suppose there exist n× n symmetric constant matrix P and polynomial K(x), a
constant ε1 > 0, and a ε2(x) ∈ Σ[x] such that

v>(P − ε1I)v ∈ Σ[x, v]

and − v>
(
PA>(x)M>(x) +M(x)A(x)P

+K>(x)B>(x)M>(x) +M(x)B(x)K(x) + ε2(x)I
)
v ∈ Σ[x, v].

Then u(x) = K(x)P−1x is globally stabilizing.

If ε2(x) > 0 for x 6= 0 then the controller is asymptotically stabilizing.
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H∞ control synthesis

SOS techniques can be used to design a controller for the polynomial system

ẋ = A(x)x +B1(x)w +B2(x)u

z1 = C1(x)x

z2 = C2(x)x + u

where z1 ∈ RM1 are outputs and w ∈ RM2 are disturbances.

We are interested in minimizing the largest induced L2 gain from w to z, (cf. definition

of H∞ norm in linear control design: ‖G(s)‖∞ = maxw(t)6=0
‖z(t)‖2
‖w(t)‖2

).

We will synthesize a controller of the form

u(x) = −[γB>2 (x)P−1(x̃) + C2(x)]x,

where x̃ and the associated index set J now correspond to the zero rows of
[B1(x)B2(x)], and γ is the lowest upper bound on L2 gain achieved.
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H∞ control synthesis for polynomial systems

Theorem (PPW2004, Theorem 9)

Suppose there exist a symmetric polynomial matrix P (x̃), a constant ε1 > 0, and a
ε2(x) ∈ Σ[x], such that

v>(P (x̃)− ε1I)v ∈ Σ[x, v]

and

−
[
v1
v2

]>
MÂP + PÂ>M> − γMB2B

>
2 M

> PC>1 MB1

−
∑

j∈J
∂P
∂xj

Aj + ε2I

C1P −(γ − ε2)I 0

B>1 M
> 0 −(γ − ε2)I


[
v1
v2

]
∈Σ[x, v],

where some matrices’ dependence on x is omitted for brevity, and
Â(x) := A(x)−B2(x)C2(x).

Then u(x) = −[γB>2 (x)P−1(x̃) + C2(x)]x has L2 gain locally bounded by γ.
If P (x̃) is a constant matrix, then the bound of γ holds globally for x ∈ Rn.

Synthesis problem is therefore “minimize γ subject to constraints in Theorem 9”.
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H∞ control synthesis for polynomial systems
In addition, can design a local controller operating within some region

X := {x ∈ Rn | gl(x) ≥ 0, l = 1, . . . , s}

by inserting additional SOS mulipliers for the constraints gl(x) ≥ 0.

Theorem (PPW2004, Proposition 11)

Suppose the SOS conditions of Theorem 6 are augmented

v>(P (x̃)− ε1I)v −
s∑

l=1

σ1,l(x, v)gl(x) ∈ Σ[x, v]

−v>
(
P (x̃)A>(x)M>(x) + · · ·+ ε2(x)I

)
v −

s∑
l=1

σ2,l(x, v)gl(x) ∈ Σ[x, v],

where the degree of σ1,l and σ2,l in v is equal to two.

Then u(x) = K(x)P−1(x̃)x is stabilizing, and an estimate of the domain of attraction of
the closed-loop zero equilibrium is

{x |x>P−1(x̃)x ≤ V },

where V is the smallest value of x>P−1(x̃)x achieved on the boundary of X .
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Notes and references

Toolbox

SOSTOOLS: http://www.cds.caltech.edu/sostools/

Literature

This lecture was based on the following well-known papers:

A. Papachristodoulou and S. Prajna, “On the Construction of Lyapunov Functions using
the Sum of Squares Decomposition,” IEEE Conf. on Decision and Control, Las Vegas,
NV, USA, 2002

S. Prajna, A. Papachristodoulou, and F. Wu, “Nonlinear Control Synthesis by Sum of
Squares Optimization: A Lyapunov-based Approach,” Asian Control Conference, 2004

Early formulations are to be found in the PhD thesis
P. Parrilo, “Structured semidefinite programs and semialgebraic geometry methods in
robustness and optimization,” Caltech, 2000.

2019-7-17 2.20

http://www.cds.caltech.edu/sostools/

	Motivation
	Sum-Of-Squares Lyapunov Analysis
	Example of SOS Lyapunov certificates
	Auxiliary variables
	Control Synthesis
	H control synthesis for polynomial systems
	Notes and references


