# Four Lectures on Polynomial Optimization for Control Lecture 3: Polymomial methods for robotics 

Joe Warrington

## Motivation

KEVIN HARTNETT SCIENCE 05.27.18 07:00 AM

## I CLLSSICAL IITTI PROBLEVI GETS PILLLED INTO SELEDIDIUINGG CARS



A collision-free path can be guaranteed by a sum-of-squares algorithm.
oLENA SHMAHALQ/QUANTA MAGAZINE
https://www.wired.com/story/a-classical-math-problem-gets-pulled-into-self-driving-cars/

## Recap: Sum-of-squares and non-negativity

- A polynomial $p$ is called sum-of-squares (SOS) if it can be written

$$
p(x)=\sum_{i} f_{i}(x)^{2}
$$

for a finite number of polynomials $f_{i}$.

- A polynomial is SOS if and only if it can be written

$$
p(x)=\mathbf{x}^{\top} \mathbf{X} \mathbf{x}
$$

where $\mathbf{X}$ is positive semidefinite and $\mathbf{x}$ is a vector of monomials in $x$. Note: Without loss of generality $\mathbf{X}$ can be assumed symmetric.

- Optimizing over SOS polynomials is therefore equivalent to optimizing over matrices $\mathbf{X} \succeq 0$.
- If $p$ defined on $n$ dimensions is SOS with degree at most $2 d$, we say it belongs to the cone $S O S_{n, 2 d} .{ }^{1}$ We use the notation

$$
p \in S O S_{n, 2 d} .
$$

[^0]
## Recap: $S O S_{n, 2 d} \subset P S D_{n, 2 d}$

- Many positive (semi-)definite polynomials are not in $S O S_{n, 2 d}$ for any degree $d$
- E.g. Motzkin polynomial

- Usually we have $S O S_{n, 2 d} \subset P S D_{n, 2 d}$.
- But in the case of a very small number of $(n, d)$ pairs featuring small $n$ or $d$ we actually have $S O S_{n, 2 d}=P S D_{n, 2 d}$; see Lecture 10 .


## Downsides of SOS programs

Desired properties of a polynomial decision problem:
(1) Cover as much of $P S D_{n, 2 d}$ in its feasible set as possible;
(2) Cheap to determine if a candidate solution is feasible.

The cone $S O S_{n, 2 d}$ addresses point 1 fairly well, but point 2 is less clear:

- SOS problems must be solved using a semidefinite programming (SDP) solver, e.g. SeDuMi.
- Polynomial, but in practice unattractive, scaling of problem size with $d$
- Relative immaturity of SDP solvers compared to e.g. LP, SOCP solvers.

In some applications, speed and numerical stability are more important than optimality $\Rightarrow$ use a cheaper positivity certificate than sum-of-squares

## Gershgorin discs ${ }^{2}$

The Gershgorin disc for row $i$ of matrix $A \in \mathbb{C}^{n \times n}$ is a closed subset of $\mathbb{C}$, centred at $a_{i i}$ and with radius $\sum_{i \neq j}\left|a_{i j}\right|$.

## Theorem (Gershgorin 1931)

All eigenvalues of A lie within at least one Gershgorin disc.

## Proof.

All of $A$ 's eigenvalue-eigenvector pairs $(\lambda, w)$ satisfy $A w=\lambda w$. Normalize any eigenvector $w$ such that its largest element $i$ is 1 , then we have for row $i$,

$$
\sum_{i \neq j} a_{i j} w_{j}+a_{i i}=\lambda w_{i}=\lambda
$$

or equivalently $\lambda-a_{i i}=\sum_{i \neq j} a_{i j} w_{j}$. The triangle inequality then yields

$$
\left|\lambda-a_{i i}\right| \leq \sum_{i \neq j}\left|a_{i j} \| w_{j}\right| \leq \sum_{i \neq j}\left|a_{i j}\right|
$$

Thus, $\lambda$ is never more than a distance of $\sum_{i \neq j}\left|a_{i j}\right|$ from $a_{i i}$ in the complex plane.

[^1]
## Gershgorin discs example



## Diagonal dominance

A matrix $A$ is diagonally dominant (DD) if $a_{i i}>\sum_{j \neq i}\left|a_{i j}\right|$ for all rows $i .^{3}$

## Theorem

If a symmetric matrix $A$ is $D D$ then it is positive semidefinite, i.e. $v^{T} A v \geq 0$ for all $v \in \mathbb{R}^{n}$.

## Proof.

Follows trivially from Gershgorin disc theorem, noting that real symmetric matrices have eigenvalues lying on the real axis.

A diagonally-dominant sum-of-squares (DSOS) polynomial can be written

$$
p(x)=\mathbf{x}^{\top} Q \mathbf{x}
$$

where $Q$ is DD. Clearly from the theorem above, all DSOS polynomials of even degree $2 d$ are non-negative on $\mathbb{R}^{n}$. Denoting the set of such polynomials $D S O S_{n, 2 d}$, we have

$$
D S O S_{n, 2 d} \subseteq P S D_{n, 2 d}, \quad \forall n \geq 1, d \geq 0
$$

[^2]
## DSOS representation

## Theorem (AA2019, Theorem 3.4)

Polynomial $p$ of degree $2 d$ can be written $p(x)=\mathbf{x}^{\top} Q \mathbf{x}$, with $Q$ a $D D$ matrix

$$
p(x)=\sum_{i} \alpha_{i} m_{i}^{2}(x)+\sum_{i, j} \beta_{i j}^{+}\left(m_{i}(x)+m_{j}(x)\right)^{2}+\sum_{i, j} \beta_{i j}^{-}\left(m_{i}(x)-m_{j}(x)\right)^{2}
$$

for some monomials $m_{i}(x), m_{j}(x)$ and some nonnegative scalars $\alpha_{i}, \beta_{i j}^{+}, \beta_{i j}^{-}$.

- Thus, DSOS polynomials really do have a sum-of-squares representation, but this is clearly at least as restrictive as the generic SOS representation. Thus

$$
D S O S_{n, 2 d} \subseteq S O S_{n, 2 d}
$$

- The SOS representation need not be unique.
- However, the condition $p(x) \in D S O S_{n, 2 d}$ can be checked (or enforced) using linear inequalities, whereas membership of $S O S_{n, 2 d}$ requires a more expensive LMI.


## DSOS program

$$
\begin{aligned}
\min _{X \in \mathbb{S}^{n}} & \langle C, X\rangle \\
\text { s. t. } & \left\langle A_{i}, X\right\rangle=b_{i}, \quad i=1, \ldots, m, \\
& X \quad \text { diagonally dominant. }
\end{aligned}
$$

## Observations:

- This is just a linear program
- Exercise: Write the problem in standard LP form.
- Encompasses optimization over the coefficients of polynomials $p(x) \in D S O S_{n, 2 d}$.
- Linear programs can be solved at far larger scale, to far higher accuracy, than semidefinite programs
- However, $X$ is restricted to a subset of the positive definite cone $\Rightarrow$ suboptimal solutions in general.


## SDSOS concept

A matrix $A$ is scaled diagonally dominant (SDD) if there exists a diagonal matrix $D$ with $d_{i i}>0$ for all rows $i$, such that $D A D$ is diagonally dominant. ${ }^{4}$

## Theorem

If a symmetric matrix $A$ is SDD matrices then it is positive semidefinite. Proof: follows immediately from the $D D$ case, after noting that pre- and post-multiplication by $D$ does not change the signs of the eigenvalues.

One can then define scaled diagonally dominant SOS (SDSOS) polynomials:

## Theorem (AA2019, Theorem 3.6)

Polynomial $p$ of degree $2 d$ can be written $p(x)=\mathbf{x}^{\top} Q \mathbf{x}$, with $Q$ an SDD matrix

$$
p(x)=\sum_{i} \alpha_{i} m_{i}^{2}(x)+\sum_{i, j}\left(\hat{\beta}_{i j}^{+} m_{i}(x)+\tilde{\beta}_{i j}^{+} m_{j}(x)\right)^{2}+\sum_{i, j}\left(\hat{\beta}_{i j}^{-} m_{i}(x)-\tilde{\beta}_{i j}^{-} m_{j}(x)\right)^{2}
$$

for some monomials $m_{i}(x), m_{j}(x)$ and some scalars $\alpha_{i}, \hat{\beta}_{i j}^{+}, \tilde{\beta}_{i j}^{+}, \hat{\beta}_{i j}^{-}, \tilde{\beta}_{i j}^{-}$with $\alpha_{i} \geq 0$.

[^3]
## SDSOS program

$\min _{X \in \mathbb{S}^{n}}\langle C, X\rangle$
s. t. $\quad\left\langle A_{i}, X\right\rangle=b_{i}, \quad i=1, \ldots, m$,
$X$ scaled diagonally dominant.

## Observations:

- It can be shown [AA2019, Lemma 3.8] that $X$ is SDD if and only if it can be written

$$
X=\sum_{i<j} M^{i j} \text {, where } M^{i j} \text { takes the form }\left[\begin{array}{ccccc}
0 & \cdots & 0 & \cdots & 0 \\
\vdots & x_{i i} & 0 & x_{i j} & \vdots \\
0 & 0 & 0 & 0 & 0 \\
\vdots & x_{j i} & 0 & x_{j j} & \vdots \\
0 & \cdots & 0 & \cdots & 0
\end{array}\right] \succeq 0 .
$$

- Each constraint $M_{i j} \succeq 0$ is in fact equivalent to the simple expressions, $x_{i i}+x_{j j} \geq 0$ and $\left\|\begin{array}{c}2 x_{i j} \\ x_{i i}-x_{j j}\end{array}\right\|_{2} \leq x_{i i}+x_{j j}$.
- Thus, we have a so-called second order cone program (SOCP) implemented with a combination of linear and "rotated quadratic cone" constraints coupling certain elements of $X$. Solve with an SOCP solver such as ECOS.


## Nested cones

- The convex cones of DSOS, SDSOS, SOS, and PSD polynomials are related by

$$
D S O S_{n, 2 d} \subseteq S D S O S_{n, 2 d} \subseteq S O S_{n, 2 d} \subseteq P S D_{n, 2 d}
$$

- The boundary of $D S O S_{n, 2 d}$ (resp. $S D S O S_{n, 2 d}$ ) is defined by a finite number of affine (resp. rotated quadratic) constraints.
- More examples: See Figs. 1, 2, 5 in [AA2019].


## r-DSOS and r-SDSOS

- Another family of cones that can approximate some polynomials in $P S D_{n, 2 d}$ that cannot be approximated by $S O S_{n, 2 d}$.
- For integer $r \geq 0$, we say polynomial $p \in r D S O S_{n, 2 d}$ (resp. $r S D S O S_{n, 2 d}$ ) if

$$
p(x) \cdot\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{r} \quad \text { is DSOS (resp. SDSOS) }
$$

- As $\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{r} \geq 0$, being in $r D S O S_{n, 2 d}$ or $r S D S O S_{n, 2 d}$ implies $p(x)$ is non-negative. Thus for any $r$,

$$
r D S O S_{n, 2 d} \subseteq r S D S O S_{n, 2 d} \subseteq P S D_{n, 2 d}
$$

- Optimizing over rDSOS (rSDSOS) polynomials is still an LP (SOCP).


## Example: Homogeneous Motzkin polynomial

It can be shown that $p(x)=x_{1}^{4} x_{2}^{2}+x_{1}^{2} x_{2}^{4}-3 x_{1}^{2} x_{2}^{2} x_{3}^{2}+x_{3}^{6} \in 2 D S O S_{3,6}$ but is not in $S O S_{3,6}$.

## Control application I: Analysis of multi-joint pendulum

- Inverted $N$-link pendulum:
- $2 N$ states, $\left(\theta_{i}, \dot{\theta}_{i}\right)$ for each link $i$
- $N-1$ inputs (main pivot is not actuated)
- Control to the vertical upright position


## Task

With given controller $u=K(x)$, approximate the region of attraction of the vertical position $\theta_{i}=\dot{\theta}_{i}=0$ for each link.

- Do this by choosing a Lyapunov function a priori and maximize $\beta$, the threshold for which

$$
V(x) \leq \beta \Rightarrow \dot{V}(x)<0
$$

or equivalently

$$
\left[\nabla_{x} V(x)\right]^{\top} f(x)<0 \quad \forall x \in\{x: V(x) \leq \beta, x \neq 0\}
$$



- Compare positivity certificates


## Control application II: Control synthesis for humanoid robot

- Humanoid robot designed by Boston Dynamics, with 30 states and 14 inputs.


## Task

Balance the robot on its right toe (assumed to have hinge behaviour at contact point).

- Synthesis problem:

$$
\begin{aligned}
\max _{\rho, L(x), V(x), u(x)} & \rho \\
\text { s.t. } & V(x) \in D S O S_{4,8} \\
& -\dot{V}(x)+L(x)(V(x)-\rho) \in D S O S_{4,10} \\
& L(x) \in D S O S_{4,4} \\
& \sum_{j} V\left(e_{j}\right)=1
\end{aligned}
$$

Note that $\dot{V}(x)$ depends on the choice of controller $u(x)$.
$L(x)$ is a multiplier polynomial for the region of attraction.
Last constraint is a normalization constraint: $e_{j}$ is the $j^{\text {th }}$ unit vector.

- Solved by sequential minimization iterating over subsets of the variables.
- Video of resulting controller recovering from different initial conditions: http://youtu.be/lmAT556Ar5c


## Conclusions

- DSOS and SDSOS optimization offer alternative certificates of positivity for polynomials, which are
- Cheaper to compute, but
- Conservative in general with respect to SOS.
- Reduction from SDP to either LP (DSOS) or SOCP (SDSOS), which can be solved at far larger scale.
- rDSOS and rSDSOS offer additional degrees of freedom which can in some cases outperform SOS!
- Possibility of "optimization in the loop" applications of polynomial optimization.

Notes and references

```
Toolbox
DSOS and SDSOS:
https://github.com/anirudhamajumdar/spotless/tree/spotless_isos
```

This lecture was based on the following publications:

## Literature

A. A. Ahmadi and A. Majumdar, "DSOS and SDSOS Optimization: More Tractable Alternatives to Sum of Squares and Semidefinite Optimization," SIAM Journal on Applied Algebra and Geometry, vol. 3, no. 2, pp. 193-230, 2019. https://arxiv.org/pdf/1706.02586.pdf
A. Majumdar, A. A. Ahmadi, and R. Tedrake, "Control and Verification of High-Dimensional Systems with DSOS and SDSOS Programming," IEEE Conference on Decision and Control, Los Angeles, CA, USA, pp. 394-401, 2014


[^0]:    ${ }^{1}$ Note that odd degree polynomials are never SOS.

[^1]:    ${ }^{2}$ S. A. Gershgorin, "Über die Abgrenzung der Eigenwerte einer Matrix," Bulletin de l'Académie des Sciences de l'URSS, no. 6, pp. 749-954, 1931

[^2]:    ${ }^{3}$ Note: The definition automatically implies $a_{i i} \geq 0$ for all $i$.

[^3]:    ${ }^{4}$ Note: Clearly all DD matrices are SDD, via the choice $D=I$.

