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LONG BEFORE ROBOTS čǿųŀđ řųň ǿř čǻřș čǿųŀđ đřįvě țħěmșěŀvěș,
mǻțħěmǻțįčįǻňș čǿňțěmpŀǻțěđ ǻ șįmpŀě mǻțħěmǻțįčǻŀ qųěșțįǿň. Țħěỳ fįģųřěđ
įț ǿųț, țħěň ŀǻįđ įț țǿ řěșț—ẅįțħ ňǿ ẅǻỳ ǿf ķňǿẅįňģ țħǻț țħě ǿbjěčț ǿf țħěįř
mǻțħěmǻțįčǻŀ čųřįǿșįțỳ ẅǿųŀđ fěǻțųřě įň mǻčħįňěș ǿf țħě fǻř-ǿff fųțųřě.
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Recap: Sum-of-squares and non-negativity

A polynomial p is called sum-of-squares (SOS) if it can be written

p(x) =
∑
i

fi(x)
2

for a finite number of polynomials fi.

A polynomial is SOS if and only if it can be written

p(x) = x>Xx

where X is positive semidefinite and x is a vector of monomials in x. Note: Without
loss of generality X can be assumed symmetric.

Optimizing over SOS polynomials is therefore equivalent to optimizing over matrices
X � 0.

If p defined on n dimensions is SOS with degree at most 2d, we say it belongs to the
cone SOSn,2d.1 We use the notation

p ∈ SOSn,2d.

1Note that odd degree polynomials are never SOS.
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Recap: SOSn,2d ⊂ PSDn,2d

Many positive (semi-)definite polynomials are not in SOSn,2d for any degree d

E.g. Motzkin polynomial

Usually we have SOSn,2d ⊂ PSDn,2d.

But in the case of a very small number of (n, d) pairs featuring small n or d we
actually have SOSn,2d = PSDn,2d; see Lecture 10.
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Downsides of SOS programs

Desired properties of a polynomial decision problem:

1 Cover as much of PSDn,2d in its feasible set as possible;

2 Cheap to determine if a candidate solution is feasible.

The cone SOSn,2d addresses point 1 fairly well, but point 2 is less clear:

SOS problems must be solved using a semidefinite programming (SDP) solver,
e.g. SeDuMi.

Polynomial, but in practice unattractive, scaling of problem size with d

Relative immaturity of SDP solvers compared to e.g. LP, SOCP solvers.

In some applications, speed and numerical stability are more important than optimality
⇒ use a cheaper positivity certificate than sum-of-squares
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Gershgorin discs2

The Gershgorin disc for row i of matrix A ∈ Cn×n is a closed subset of C, centred at aii
and with radius

∑
i 6=j |aij |.

Theorem (Gershgorin 1931)

All eigenvalues of A lie within at least one Gershgorin disc.

Proof.

All of A’s eigenvalue-eigenvector pairs (λ,w) satisfy Aw = λw. Normalize any
eigenvector w such that its largest element i is 1, then we have for row i,∑

i 6=j

aijwj + aii = λwi = λ,

or equivalently λ− aii =
∑
i 6=j aijwj . The triangle inequality then yields

|λ− aii| ≤
∑
i 6=j

|aij ||wj | ≤
∑
i6=j

|aij |.

Thus, λ is never more than a distance of
∑
i 6=j |aij | from aii in the complex plane.

2S. A. Gershgorin, “Über die Abgrenzung der Eigenwerte einer Matrix,” Bulletin de l’Académie des Sciences
de l’URSS, no. 6, pp. 749-954, 1931
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Gershgorin discs example

A =


4 0.2 −2 −0.1
0.5 6.5 0.2 1.5
2 0.1 8 0.2
0.4 0.7 0.3 3
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Diagonal dominance

A matrix A is diagonally dominant (DD) if aii >
∑
j 6=i |aij | for all rows i.3

Theorem

If a symmetric matrix A is DD then it is positive semidefinite, i.e. vTAv ≥ 0 for all
v ∈ Rn.

Proof.

Follows trivially from Gershgorin disc theorem, noting that real symmetric matrices have
eigenvalues lying on the real axis.

A diagonally-dominant sum-of-squares (DSOS) polynomial can be written

p(x) = x>Qx

where Q is DD. Clearly from the theorem above, all DSOS polynomials of even degree 2d
are non-negative on Rn. Denoting the set of such polynomials DSOSn,2d, we have

DSOSn,2d ⊆ PSDn,2d, ∀n ≥ 1, d ≥ 0.

3Note: The definition automatically implies aii ≥ 0 for all i.
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DSOS representation

Theorem (AA2019, Theorem 3.4)

Polynomial p of degree 2d can be written p(x) = x>Qx, with Q a DD matrix

m

p(x) =
∑
i

αim
2
i (x) +

∑
i,j

β+
ij (mi(x) +mj(x))

2 +
∑
i,j

β−ij (mi(x)−mj(x))
2

for some monomials mi(x),mj(x) and some nonnegative scalars αi, β
+
ij , β

−
ij .

Thus, DSOS polynomials really do have a sum-of-squares representation, but this is
clearly at least as restrictive as the generic SOS representation. Thus

DSOSn,2d ⊆ SOSn,2d

The SOS representation need not be unique.

However, the condition p(x) ∈ DSOSn,2d can be checked (or enforced) using linear
inequalities, whereas membership of SOSn,2d requires a more expensive LMI.
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DSOS program

min
X∈Sn

〈C,X〉

s. t. 〈Ai, X〉 = bi, i = 1, . . . ,m,

X diagonally dominant.

Observations:

This is just a linear program
I Exercise: Write the problem in standard LP form.

Encompasses optimization over the coefficients of polynomials p(x) ∈ DSOSn,2d.

Linear programs can be solved at far larger scale, to far higher accuracy, than
semidefinite programs

However, X is restricted to a subset of the positive definite cone ⇒ suboptimal
solutions in general.
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SDSOS concept

A matrix A is scaled diagonally dominant (SDD) if there exists a diagonal matrix D with
dii > 0 for all rows i, such that DAD is diagonally dominant.4

Theorem

If a symmetric matrix A is SDD matrices then it is positive semidefinite. Proof: follows
immediately from the DD case, after noting that pre- and post-multiplication by D does
not change the signs of the eigenvalues.

One can then define scaled diagonally dominant SOS (SDSOS) polynomials:

Theorem (AA2019, Theorem 3.6)

Polynomial p of degree 2d can be written p(x) = x>Qx, with Q an SDD matrix

m

p(x) =
∑
i

αim
2
i (x) +

∑
i,j

(
β̂+
ijmi(x) + β̃+

ijmj(x)
)2

+
∑
i,j

(
β̂−ijmi(x)− β̃−ijmj(x)

)2
for some monomials mi(x),mj(x) and some scalars αi, β̂

+
ij , β̃

+
ij , β̂

−
ij , β̃

−
ij with αi ≥ 0.

4Note: Clearly all DD matrices are SDD, via the choice D = I.
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SDSOS program

min
X∈Sn

〈C,X〉

s. t. 〈Ai, X〉 = bi, i = 1, . . . ,m,

X scaled diagonally dominant.

Observations:

It can be shown [AA2019, Lemma 3.8] that X is SDD if and only if it can be written

X =
∑
i<j

M ij , where M ij takes the form



0 · · · 0 · · · 0
... xii 0 xij

...

0 0 0 0 0
... xji 0 xjj

...
0 · · · 0 · · · 0


� 0.

Each constraint Mij � 0 is in fact equivalent to the simple expressions,

xii + xjj ≥ 0 and

∥∥∥∥ 2xij
xii − xjj

∥∥∥∥
2

≤ xii + xjj .

Thus, we have a so-called second order cone program (SOCP) implemented with
a combination of linear and “rotated quadratic cone” constraints coupling certain
elements of X. Solve with an SOCP solver such as ECOS.
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Nested cones

The convex cones of DSOS, SDSOS, SOS, and PSD polynomials are related by

DSOSn,2d ⊆ SDSOSn,2d ⊆ SOSn,2d ⊆ PSDn,2d

The boundary of DSOSn,2d (resp. SDSOSn,2d) is defined by a finite number of
affine (resp. rotated quadratic) constraints.

More examples: See Figs. 1, 2, 5 in [AA2019].
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r-DSOS and r-SDSOS

Another family of cones that can approximate some polynomials in PSDn,2d that
cannot be approximated by SOSn,2d.

For integer r ≥ 0, we say polynomial p ∈ rDSOSn,2d (resp. rSDSOSn,2d) if

p(x) ·

(
n∑
i=1

x2i

)r
is DSOS (resp. SDSOS).

As (
∑n
i=1 x

2
i )
r ≥ 0, being in rDSOSn,2d or rSDSOSn,2d implies p(x) is

non-negative. Thus for any r,

rDSOSn,2d ⊆ rSDSOSn,2d ⊆ PSDn,2d.

Optimizing over rDSOS (rSDSOS) polynomials is still an LP (SOCP).

Example: Homogeneous Motzkin polynomial

It can be shown that p(x) = x41x
2
2 + x21x

4
2 − 3x21x

2
2x

2
3 + x63 ∈ 2DSOS3,6 but is not in

SOS3,6.

2019-7-17 3.14



Control application I: Analysis of multi-joint pendulum

Inverted N -link pendulum:
I 2N states, (θi, θ̇i) for each link i
I N − 1 inputs (main pivot is not actuated)

Control to the vertical upright position

Task

With given controller u = K(x), approximate the region of
attraction of the vertical position θi = θ̇i = 0 for each link.

Do this by choosing a Lyapunov function a priori and
maximize β, the threshold for which

V (x) ≤ β ⇒ V̇ (x) < 0

or equivalently

[∇xV (x)]>f(x) < 0 ∀x ∈ {x : V (x) ≤ β, x 6= 0}

Compare positivity certificates
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Control application II: Control synthesis for humanoid robot

Humanoid robot designed by Boston Dynamics, with 30 states and 14 inputs.

Task

Balance the robot on its right toe (assumed to have hinge behaviour at contact point).

Synthesis problem:

max
ρ,L(x),V (x),u(x)

ρ

s.t. V (x) ∈ DSOS4,8

− V̇ (x) + L(x)(V (x)− ρ) ∈ DSOS4,10

L(x) ∈ DSOS4,4∑
j

V (ej) = 1

Note that V̇ (x) depends on the choice of controller u(x).
L(x) is a multiplier polynomial for the region of attraction.
Last constraint is a normalization constraint: ej is the jth unit vector.

Solved by sequential minimization iterating over subsets of the variables.

Video of resulting controller recovering from different initial conditions:
http://youtu.be/lmAT556Ar5c
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Conclusions

DSOS and SDSOS optimization offer alternative certificates of positivity for
polynomials, which are

I Cheaper to compute, but
I Conservative in general with respect to SOS.

Reduction from SDP to either LP (DSOS) or SOCP (SDSOS), which can be solved
at far larger scale.

rDSOS and rSDSOS offer additional degrees of freedom which can in some cases
outperform SOS!

Possibility of “optimization in the loop” applications of polynomial optimization.
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Notes and references

Toolbox

DSOS and SDSOS:
https://github.com/anirudhamajumdar/spotless/tree/spotless_isos

This lecture was based on the following publications:

Literature

A. A. Ahmadi and A. Majumdar, “DSOS and SDSOS Optimization: More Tractable
Alternatives to Sum of Squares and Semidefinite Optimization,” SIAM Journal on
Applied Algebra and Geometry, vol. 3, no. 2, pp. 193–230, 2019.
https://arxiv.org/pdf/1706.02586.pdf

A. Majumdar, A. A. Ahmadi, and R. Tedrake, “Control and Verification of
High-Dimensional Systems with DSOS and SDSOS Programming,” IEEE Conference on
Decision and Control, Los Angeles, CA, USA, pp. 394-401, 2014
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