
Four Lectures on Polynomial Optimization for Control
Lecture 4: Robust motion planning using SOS methods

Joe Warrington

2019-7-17 4.1

Motivation

Complex robotic tasks cannot be accomplished with simple static feedback
controllers. Example applications:

I Route planning through an obstacle-strewn environment
I Aircraft collision avoidance
I Robot arm trajectories

Difficulties
I Nonlinear dynamics
I Non-convex constraints
I Model uncertainty
I Task differs between instances

Typical scenario
I Plan a nominal trajectory according to some criterion: minimum time, cost, or just

feasibility
I Implement a mixture of feed-forward control and local state feedback to track nominal

trajectory

2019-7-17 4.2

Motion planning problem

Initial state xinit, goal set Xgoal, free space Xfree := X\Xobs

Task is to find a minimum-cost path from xinit to any x ∈ Xgoal, passing only
through Xfree.

2019-7-17 4.3

xinit

Xgoal
Xfree

Xobs

— X

Motion planning: Single- and multi-query

In a single-query application, we do not attempt to re-use previous planning
solutions. Each time a plan is required, a new one is constructed from scratch.

In a multi-query application, one round of computation is performed offline, and
used multiple times online for different motion tasks.

Most widely used motion planning algorithms:
I Single query: RRT (rapidly exploring random trees)
I Multiple query: PRM (probabilistic road maps)

Many variants of both algorithms exist

Focus of this lecture: RRT

2019-7-17 4.4

Motion planning: RRT

Algorithm:
1: V ← {xinit}
2: E ← ∅
3: for i = 1 to n do
4: xrand ← SampleFreeSpace

5: xnearest ← NearestNode(V, xrand)
6: xnew ← ΠB(xnearest)(xrand)
7: if ObstacleFree(xnearest, xnew) then

8: V ← V ∪ {xnew}
9: E ← E ∪ {(xnearest, xnew)}

10: end if
11: end for
12: return G = (V, E)

Can also be terminated when a node in
a “goal set” is connected to the tree.

2019-7-17 4.5

xinit

xrand

xnearest

xnew

RRT example

2019-7-17 4.6

RRT example

2019-7-17 4.6

RRT example

2019-7-17 4.6

RRT example

2019-7-17 4.6

RRT example

2019-7-17 4.6

RRT example

2019-7-17 4.6

Motion planning: RRT*

Revised algorithm:

1: V ← {xinit}
2: E ← ∅
3: for i = 1 to n do
4: xrand ← SampleFreeSpace

5: xnearest ← NearestNode(V, xrand)
6: xnew ← ΠB(xnearest)(xrand)
7: if ObstacleFree(xnearest, xnew) then

8: V ← V ∪ {xnew}
9: E ← E ∪ {(xnearest, xnew)}

10: Rewire(xnew)
11: end if
12: end for
13: return G = (V, E)

The Rewire step looks for lower-cost
connections in the neighbourhood of
xnew, and creates or deletes links such
that the result is still a tree.

2019-7-17 4.7

Property 1: Probabilistic completeness

A sampling-based algorithm is probabilistically complete if for any robustly
feasible1 routing problem,

lim inf
n→∞

P (∃xgoal ∈ Vn ∩ Xgoal : xinit is connected to xgoal through Gn) = 1

where Gn := (Vn, En) is the vertex set at iteration n of the algorithm.

RRT is known to be probabilistically complete:

Theorem (Lavalle and Kuffner 2001)

If a path planning problem is robustly feasible then there exist constants a > 0 and
n0 ∈ N (depending on the planning environment but not xinit), such that the RRT
algorithm achieves

P(Vn ∩ Xgoal 6= ∅) > 1− e−an, ∀n > n0.

In other words, the chance of RRT failing to connect xinit to the goal set Xgoal

decreases exponentially to zero with the number n of iterations, at least after some
n0.

1Here, robustly feasible means there exists a small enough δ > 0 by which all obstacles can be increased in
size such that the problem remains feasible. The condition is used to rule out pathological cases where
obstacles almost intersect. It has nothing to do with robust control.
2019-7-17 4.8

Property 2: Asymptotic optimality

Define a cost function that maps paths through G to R+, and let c∗ be the cost of a
robustly optimal solution2 to the path planning problem.

A sampling-based algorithm is asymptotically optimal if for any path planning
problem with a robustly optimal solution with finite cost c∗,

P(lim sup
n→∞

Yn = c∗) = 1.

In the above expression, Yn is the optimal cost after iteration n of reaching Xgoal

through the tree Gn.

It turns out that for any sampling-based algorithm, the probability of converging to
c∗ is either 0 or 1, i.e., the algorithm will either “almost never” or “almost always”
converge to an optimal-cost solution.

The following properties of RRT and RRT* hold:

Theorem (KF2011, Theorems 33 and 38)

The RRT algorithm is not asymptotically optimal, but RRT* is.

Other technicalities and minor assumptions apply in order to rule out pathological
cases; see [KF2011, Section 4.2].

2The definition is technical and relates to robust feasibility of the problem; see [KF2011, Section 4.2] for
details.
2019-7-17 4.9

Feedback motion planning

Smooth dynamical system ẋ = f(x, u), with some equilibrium xG, uG such that
f(xG, uG) = 0

Define x̄ = x− xG, ū = u− uG and define a local linearization, ˙̄x ≈ Ax̄+Bū.

The cost of regulating to (x̄ = 0, ū = 0) is

J(x̄′) :=

∫ ∞
0

[
x̄>Qx̄+ ū>Rū

]
dt

where Q � 0, R � 0, and x̄(0) = x̄′.

This is a standard LQR problem, whose solution is

J∗(x̄) = x̄>Sx̄

where S � 0 solves the continuous algebraic Riccati equation (CARE),

Q− SBR−1B>S + SA+A>S = 0.

The associated optimal state feedback controller is linear:

ū∗(x̄) = −R−1B>Sx̄

2019-7-17 4.10

LQR region of attraction

Define the ρ-sublevel set

BG(ρ) = {x : 0 ≤ V (x) ≤ ρ},

Then BG(ρ) is certified to be a region of attraction if, for all x ∈ BG(ρ),
1 V (x) is positive definite (i.e., strictly > 0 except at xG, where it is 0)
2 V̇ (x) is negative definite (i.e., strictly < 0 except at xG, where it is 0)

If these conditions hold, all initial conditions in BG(ρ) converge to xG (Slotine & Li,
1990).

We will test these conditions for
I The true (polynomial or approximated-by-polynomial) dynamics
I The linear controller designed for the linearized system around (xG, uG)
I The value function J(x̄) = x̄>Sx̄, acting as a candidate Lyapunov function V

Insert linear controller into original dynamics:

V̇ (x) = J̇(x̄) = 2x̄>Sf(xG + x̄, uG −Kx̄)

where K = −R−1B>S as in previous slide.
Polynomial condition ⇒ use sum of squares programming.

2019-7-17 4.11

SOS program for largest region of attraction

To find largest “radius” ρ for which Lyapunov function can be certified, solve the
following:

max
ρ,h(·)

ρ

s. t. J̇(x̄) + h(x̄)(ρ− J(x̄)) ≤ ε‖x̄‖22
h ∈ Σ[x]d,

where the degree d is large enough to be able to match the monomial coefficients
found in J̇(·) = ∂J

∂x
· f(·).

Polynomial h(·) is a multiplier for the constraint J(x̄) ≤ ρ.

Problem is not convex if ρ and h(·) are both optimization variables, so solve by
bisection on ρ. Search for any feasible solution h(·) with ρ ≥ 0 fixed:

min
h(·)

0

s. t. J̇(x̄) + h(x̄)(ρ− J(x̄)) ≤ ε‖x̄‖22
h ∈ Σ[x]d.

If infeasible, decrease ρ until it becomes feasible. By smoothness of f , there must
exist some small region of attraction around xG, and a feasible ρ.

2019-7-17 4.12

Connecting multiple Lyapunov functions

We wish to combine several such regions of attraction, to cover the state space with
“safe” regions, also referred to as funnels.

Nested Lyapunov functions (Peterfreund & Baram 1999, Burridge et al. 1999)

2019-7-17 4.13

xG

X

safe regions

Building an LQR-tree

Any trajectory leading to a point in BG(ρ) will ultimately go to xG.

Grow a tree in a similar manner to RRT:

1 Pick a point in xnew ∈ X\BG(ρ) and try to design a finite-time nonlinear trajectory
(xnom(t), unom(t)) for t ∈ [0, tf], where x(0) = xnew.

2 End of the trajectory should be on an existing part of the tree.
3 Certify a region of attraction around xnom(t) for t ∈ [0, tf] that covers a non-zero

fraction of X
I Needed because with probability 1 we will never land exactly on the trajectory
I Therefore need to say something about the surrounding space being safe

4 If no finite time trajectory can be found to connect to the existing tree, discard the
point and generate one somewhere else.

Step 1 is “easy” as mature methods exist: Multiple shooting, collocation methods.

Step 3 is tricky!

2019-7-17 4.14

Closed-loop feedback along nonlinear trajectories

Once a nonlinear finite-time trajectory (xnom(t), unom(t)) has been found, need to
work out how to track or reach it from nearby

Define a time-varying linearization for x̄(t) := x(t)− xnom(t) and
ū(t) := u(t)− unom(t):

˙̄x(t) = A(t)x̄(t) +B(t)ū(t)

and associated time-varying state feedback controller,

ū(t) = −K(t)x̄(t).

Derivation follows same lines as in previous time-invariant case:

J(x̄′, t′) = x̄>(tf)Qf x̄(tf) +

∫ tf

t′

[
x̄>(t)Qx̄(t) + ū>(t)Rū(t)

]
dt

where Qf � 0, Q � 0, R � 0, and x̄(t′) = x̄′. We have K(t) = R−1B>(t)S(t),
where S(t) solves the backward differential equation

−Ṡ = Q− SBR−1B>S + SA+A>S, with S(tf) = Qf .

2019-7-17 4.15

Closed-loop feedback along nonlinear trajectories (II)

How far away from (xnom(t), unom(t)) can we rely on ū(t) = −K(t)x̄(t)?
I The constant ρ found for the infinite-horizon problem earlier does not certify safety

with time-varying dynamics.

Strategy: Grow a time-varying funnel ρ(t) backwards from ρ(tf) = ρf
I The end condition ρf is determined by whatever robustness is available at the part of

the tree the nominal trajectory connects to at t = tf
I Then ρ(t) is chosen to be piecewise linear on breakpoints in time t0, t1, . . . , tk, . . . , tf .

These breakpoints often arise from the trajectory generation method.

Each segment has ρk(t) = αk + βkt, with each αk, βk chosen such that
ρk(tk+1) ≤ ρk+1(tk+1).

2019-7-17 4.16

ρf

t

ρ

tft0 tk tk+1

dρ
dt = βk

Closed-loop feedback along nonlinear trajectories (III)

Must ensure that J(x̄, t) := x̄>(t)S(t)x̄(t) decreases at least as fast as ρ(t)
whenever we are at the boundary of the funnel, i.e. whenever J(x̄, t) = ρ(t)

This is equivalent to

J̇(x̄, t) ≤ ρ̇k(t) ≡ βk, ∀(x̄, t) ∈ {(x̄, t) |J(x̄, t) = ρk(t), tk ≤ t < tk+1}

This is a polynomial non-negativity condition on a set defined by polynomial
constraints!

SOS program3

min
h1(·),h2(·),h3(·)

0

s. t. J̇(x̄)− ρ̇k(t) + h1(x̄, t)(ρk(t)− J(x̄, t))

+ h2(x̄, t)(t− tk) + h3(x̄, t)(tk+1 − t) ≤ 0, ∀(x̄, t)
h2 ∈ Σ[x]d2 ,

h3 ∈ Σ[x]d3 .

3Note h1 does not need to be non-negative because it is associated with an equality constraint, which is
equivalent to two inequalities back-to-back ⇒ sign of polynomial does not matter.
2019-7-17 4.17

Implementing real-time control

In real time we need to work out, given current state x, what branch b of the tree T
we are on, and how far along the corresponding trajectory xbnom(t).

Strategy: compute a confidence score:

c(x, t, b) := ρb(t)− (x− xbnom(t))>Sb(t)(x− xbnom(t))

Intuitively this tells you how safely inside the funnel you are.

Then our best guess of position is

arg max
t∈[t0,tf],b∈T

c(x, t, b) (C)

and we implement the corresponding controller K(t) from branch b and time t.

In pratice, it is not practical to keep re-optimising b and t, so we just assume ṫ = 1
and that b only changes when the parent branch of the tree is reached.

I At that point, b← Parent(b) and t← t0 again, and the controller is switched to the
parent branch’s control rule.

I If a large disturbance blows us off the current branch, we can re-evaluate (C).

2019-7-17 4.18

Probabilistic feedback coverage

The LQR-Trees algorithm comes with a probabilistic feedback coverage guarantee.

I Similar to the probabilistic completeness of RRT.

Required assumptions:
1 The sampling probability density is non-zero everywhere in X
2 At the goal xG the linearized system is controllable
3 The system is locally, exponentially stabilizable towards all trajectories obeying
ẋ(t) = f(x(t), u(t))

4 The motion planner has a non-zero chance of successfully connecting a new sampled
point xnew to the existing tree.

Theorem (Tedrake et al. 2010)

Let C∞ be the limiting coverage of the LQR-Trees algorithm, and let R(xG) be the set of
states from which there exists a piecewise-continuous control signal u(t) such that the
state asymptotically approaches xG. Then if the assumptions above hold,
cl(C∞) = cl(R(xG)), where cl(·) indicates the closure of a possibly open set.

2019-7-17 4.19

Numerical example: Pendulum swing-up

Tedrake et al. 2010, Section 5

Pendulum with dynamics

Iθ̈(t) + bθ̇(t) +mgl sin θ(t) = τ(t)

where the states and inputs are

x(t) =

[
θ(t)

θ̇(t)

]
, u(t) = τ(t)

Parameters: m = 1, l = 0.5, b = 0.1,
I = ml2 = 0.25, and |τ(t)| ≤ 3.

Goal is

xG =

[
π
0

]
, uG = 0

LQR weightings:

Q =

[
10 0
0 1

]
, R = 20

2019-7-17 4.20

θ(t), θ̇(t)

l

τ(t)

Real-time control: Funnel libraries

Majumdar and Tedrake 2017

A robot navigating in an unexplored environment cannot execute the LQR-Trees
algorithm

Furthermore, real-time computation of funnels is time consuming (SOS programs are
potentially large semidefinite programs)

Strategy: Pre-compute funnels for obstacle avoidance.
I These funnels should be as small as possible to maximize chance of safe obstacle

avoidance.
I Determine whether offline computed funnels can be composed in real time.
I In real-time, simply search for valid funnels once obstacles are observed.

The result is a so-called funnel library, which can be queried in milliseconds,
returning an associated feedback control law.

Real-world hardware test on a small plane:
https://www.youtube.com/watch?v=cESFpLgSb50

2019-7-17 4.21

https://www.youtube.com/watch?v=cESFpLgSb50

Notes and references

This lecture was based on the following publications:

Literature

S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,”
International Journal of Robotics Research, vol. 30, no. 7, pp. 846–894, 2011.

R. Tedrake et al., “LQR-trees: Feedback Motion Planning via Sums-of-Squares
Verification,” International Journal of Robotics Research, vol. 29, no. 8, pp. 1038–1052,
2010.

A. Majumdar and R. Tedrake, “Funnel libraries for real-time robust feedback motion
planning,” International Journal of Robotics Research, vol. 38, no. 8, pp. 947–982, 2017.

2019-7-17 4.22

	Motivation
	Sampling-based motion planning
	Motion planning
	Feedback motion planning
	LQR-Trees algorithm
	Funnel libraries
	Notes and references

